

2025·长沙·化工园区高盐高COD高氨氮 废水处理新技术新装备

高效芬顿氧化工艺去除COD技术的发展

张乐华 教授 华东理工大学/石河子大学 工业废水无害化与资源化国家工程研究中心

1 经典芬顿氧化技术 02 铁碳微电解+双氧水技术 03 铁阳极电解+双氧水技术 04 形稳阳极及双氧水协同技术 05 结论与讨论

East China University of Science and

勤奋求实 励志明德

经典芬顿氧化技术

East China University of Science and

勤奋求实 励志明德

芬顿试剂反应机理

芬顿试剂具有很强的氧化能力在于其中含有 Fe^{2+} 和 H_2O_2 。其主要反应机理为:

$$Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + \cdot OH + OH^-$$

芬顿试剂能有效氧化去除难降解有机物,其实质是H₂O₂ 在Fe²⁺ 的催化作用下生成羟基自由基(·OH)。羟基自由基·OH 具有强氧 化性和很强的亲电加成性能,可将大多数有机物氧化分解成小分 子物质。

在紫外光条件下,H₂0₂会分解,反应式为:

 $H_2O_2 + hv \rightarrow 2HO$

该反应的发生,降低了Fe²⁺的用量,减少了Fe²⁺的二次污染, 同时也保持了H₂0₂较高的利用率。同时紫外光和Fe²⁺对H₂0₂的催 化分解存在协同效应,即紫外光和Fe²⁺共存时H₂0₂的分解速率远 大于Fe²⁺或紫外光时H₂0₂分解速率的简单加和。

微波-芬顿法

微波是一种电磁波,其波长在1mm—1m之间。微波辐射液体能使其 中的极性分子产生高速旋转而产生热量,同时改变体系热力学函数, 降低活化能和分子的化学键强度。目前、微波消除污染物的研究正 处于试验阶段,国内外报道较少,微波辐射下Fenton试剂氧化催化 法是降解水中有机污染物的一种有效方法, 与Fenton试剂法相比, 能够显著缩短反应时间,提高降解产率,具有较大的工业应用潜力。

电-芬顿法

电芬顿法是利用电化学法产生的Fe²⁺和H₂O₂作为芬顿试剂的持续来源,两者 产生后立即作用而生成具有高度活性的羟基自由基,使有机物得到降解。

- 优点:
- ●不需或只需加入少量化学药剂。
- ●不会产生二次污染。
- ●电解过程控制的参数只有电流和电压,易于实现自动控制。

● Fe²⁺和H₂O₂以相当的速率持续产生,起初有机物的降解速率较慢,但能保 证长时间持续有效地降解,污泥量少,后处理简单。

铁碳微电解+双氧水技术

East China University of Science and

勤奋求实 励志明德

铁碳微电解技术原理

1、电化学原理:

- * 在酸性和曝气的条件下,铁屑-碳颗粒之间存在着电位差而形成了无数个细微 原电池。当污水通过含铁和碳的填料时,铁成为阳极,碳成为阴极,并有微 电流流动,形成了干干万万个微小电池,产生"内电解",发生腐蚀,也就 是氧化还原反应:
- ◆ 阳极反应: Fe-2e⁻—Fe²⁺ E^θ(Fe²⁺/Fe)=-0.44V
- ◆ 阴极反应: 2H++2e→H₂↑ E^θ (H+/H₂)=0.00V
 - 当有氧气时: O₂+4H⁺+4e⁻→2H₂O E^θ (O₂)=1.23V

 $O_2 + 2H_2O + 4e^{-} \rightarrow 4OH^{-} E^{\theta} (O_2/OH^{-}) = 0.40V$

(1) 絮凝作用——由于阳极生成的铁离子与废水中的氢氧根离子结合生成氢氧化 铁,有极强的吸附能力,使水得以澄清;铁离子本身也有混凝作用,它与污染物中 带微弱负电荷的微粒异性相吸,形成比较稳定的絮凝物(也叫铁泥)而去除;

(2)由于有机物参预阴极的还原反应,使官能团发生了变化改变了原有机物性质, 降低了色度,提高了废水的可生化性;

(3) 一些无机物也参预反应生成沉淀得以去除,如: Fe²⁺ +S^{2-→}FeS↓;

(4)废水的胶体粒子和微小分散的污染物受电场作用,产生电泳现象,向相反电荷的电极移动,并聚集在电极上使水澄清;

(5) 阴极生成的氢气,具有气浮效应。

三、污水处理厂铁碳微电解装置

◆1、反应速率快,一般工业废水只需要半小时至数小时;

* 2、作用有机污染物质范围广,如:含有偶氟、碳双键、硝基、卤代基结构的难 降解有机物质;

- ✤ 3、 运行成本极低,只消耗少量的单质铁 (最理想并且价廉易得的是金属加工废料铁刨花);
- ◇ 4、 使用寿命长,操作维护方便,微电解装置只要定期的添加铁屑便可,惰性电极不用更换,腐蚀电极每年补充投入两次;

铁阳极电解+双氧水技术

East China University of Science and

勤奋求实 励志明德

(2)在酸性条件下 4Fe²⁺+O₂+2H₂O→4Fe³⁺+4OH⁻

水的电解

1、电解氧化

- ・ 直接氧化: 污染物直接在阳极失去电子而发生氧化
- ・间接氧化:利用溶液中的电极电势较低的阴离子,例如 OH-、Cl- 在 阳极失去电子生成新的氧化剂的活性物质如[O]、[OH]、Cl₂ 等 。

2、电解还原

- ・直接还原: 污染物直接在阴极上 得到电子而发生还原作用。
- ・间接还原: 污染物中的阳离子首先在阴极得到电子, 使得电解质中金属 阳离子在阴极得到电子直接被还原为低价阳离子或金属沉淀。

3、电解絮凝

 可溶性阳极如铁铝等,通以直流电后,阳极失去电子,形成金属阳离子Fe²⁺、Al³⁺,与 溶液中的OH-结合生成高活性的絮凝基团,其吸附能力极强,絮凝效果优于普通絮凝剂, 利用其吸附架桥和网捕卷扫等作用,可将废水中的污染物质吸附共沉而将其去除。

4、电解气浮

- 电解气浮是对废水进行电解,水分子电离产生H+和OH-,在电场驱动下定向迁移, 并在阴极板和阳极板表面分别析出氢气和氧气。
- 电解气浮氢气泡约为10~30µm, 氧气泡约为20~60µm;
- 电解气浮既可以去除废水中的疏水性污染物,也可以去除废水中的亲水性污染物。

形稳阳极电解+双氧水技术

East China University of Science and

勤奋求实 励志明德

空气辅助电催化氧化还原

勤奋求实 励志明德

04

空气辅助电催化氧化还原

勤奋求实 励志明德

07

空气辅助电催化 湿式氧化

East China University of Science and

勤奋求实 励志明德

勤奋求实 励志明德

09

勤奋求实 励志明德

10

East China University of Science and

華東習こ大學

单因素分析与稳定性测试

勤奋求实 励志明德

East China University of Science and

華東習工大學

East China University of Science and

勤奋求实 励志明德

 $C/C_0 = 0.04226 + 0.95737e^{-t/6.90242}$

0.13870

0.857921567

0.9975

400

四步降解机制

勤奋求实 励志明德

13

其他污染物的降解效果及能耗

污染物	初始TOC (mg/L)	最终TOC (mg/L)
RhB	175.55	5.3450
MV	201.07	5.6125
МО	128.44	8.6725
CR	187.13	4.4125
MB	137.93	4.2750

污染物	初始COD (mg/L)	最终COD (mg/L)	CE (%)	SEC _{cop} (kW•h /kg-COD)
RhB	249.233	27.491	41.27	48.71
MV	324.660	41.035	52.79	38.08
МО	258.285	35.875	41.40	48.56
CR	152.687	28.987	23.02	87.31
MB	299.608	27.528	50.64	39.69

降解多种污染物中最低能耗为38.08kW·h /kg-COD, 在众多氧化铅类电极中(45.3~420kW·h /kg-COD)较低。 根据计算,30 min与90 min时RhB矿化率分别为194.9%和 100.3%,均大于100%。说明该反应为氧气电催化氧化为主导 而非直接电解氧化为主导。

内部曝气阴极 产双氧水

East China University of Science and

勤奋求实 励志明德

勤奋求实 励志明德

17

East China University of Science and

勤奋求实 励志明德

East China University of Science and

🔞 華東習工大學

勤奋求实 励志明德

	因素			水平			(a) Nerrel Flor of Probability (b) Producer in Actual	
电流	密度 (mA/cm ²) A	30	40	50			
	рН	В	7	9	11		R ² =0.9536	
碳纲	, 外米管负载量(g)	С	0.05	0.1	0.15		Adi P2-0.0072	
РТ	 FE负载量(mL)	D	0.25	0.5	0.75		AUJ R ² =0.9072	
来源	平方和	自由度	均方	F-value	p-value	显著性	1 秋首性能良好	
Model	2.05E+06	14	1.47E+05	20.56	<0.0001	非常显著		
A-CD	60998.06	1	60998.06	8.55	0.0111	显著		
B-pH	33191.97	1	33191.97	4.65	0.0488	显著	, ,	
C-Cataly	st 6.27E+05	1	6.27E+05	87.9	<0.0001	非常显著		
D-PTFE	71644.94	1	71644.94	10.05	0.0068	显著	!最优条件:电流密度41.20 mA/cm ² 、pH 8.73、	
AB	15555.7	1	15555.7	2.18	0.1619	不显著		
AC	411.19	1	411.19	0.0577	0.8137	不显著	1 012 g CNIT 合 我是 055 mL DTEE 今 是	
AD	1111.08	1	1111.08	0.1558	0.6990	不显著	II 0.12 g CNI贝轼里、0.33 IIILF II L百里	
BC	985.27	1	985.27	0.1381	0.7157	不显著		
BD	7511.12	1	7511.12	1.05	0.3222	不显著	1. 优化后过氧化氢产率刃1068.56 mg/L,均值提升8.31%	
CD	12656.25	1	12656.25	1.77	0.2041	不显著		
A ²	5.94E+05	1	5.94E+05	83.34	<0.0001	非常显著		
B ²	3.00E+05	1	3.00E+05	42.02	<0.0001	非常显著		
C ²	5.57E+05	1	5.57E+05	78.11	<0.0001	非常显著		
D ²	4.35E+05	1	4.35E+05	61.02	<0.0001	非常显著		
残差	99848.17	14	7132.01					
失拟项	84084.22	10	8408.42	2.13	0.2422	不显著		
误差	15763.95	4	3940.99					
总和	2.15E+06	28						
	CNT含量>PTFE含量>电流密度>pH值							

勤奋求实 励志明德

20

稳定性测试

空气辅助电芬顿机理 探究与实际废水处理

East China University of Science and

勤奋求实 励志明德

电催化湿式氧化机制探究

勤奋求实 励志明德

24

电催化湿式氧化机制探究

内部曝气阴极产过氧化氢反应机制探究

勤奋求实 励志明德

26

East China University of Science and

華東理工大學

内部曝气阴极产过氧化氢反应机制

勤奋求实 励志明德

27

蒽醌染料废水处理

勤奋求实 励志明德

28

结论与展望

East China University of Science and

勤奋求实 励志明德

勤奋求实 励志明德

2025·长沙·化工园区高盐高COD高氨氮 废水处理新技术新装备

张乐华 教授 华东理工大学/石河子大学 工业废水无害化与资源化国家工程研究中心